C'- APPROXIMATE SOLUTIONS OF SECOND ORDER
SINGULAR ORDINARY DIFFERENTIAL EQUATIONS

GEORGE L. KARAKOSTAS

ABSTRACT. In this work a new method is developed to obtain
Cl-approximate solutions of initial and boundary value problems
generated from a one-parameter second order singular ordinary dif-
ferential equation. Information about the order of approximation
is also given by introducing the so called growth index of a func-
tion. Conditions are given for the existence of such approximations
for initial and boundary value problems of several kinds. Exam-
ples associated with the corresponding graphs of the approximate
solutions, for some values of the parameter, are also given.

CONTENTS

1.  Introduction

2. The growth index of a function

3.  Transforming equation (1.5)

4.  Asymptotic approximation of the Initial Value Problem
(1.5)-(1.6) in case ¢ = +1

5. Application to the Initial Value Problem (1.3)-(1.4)

6. Approximate solutions of the Initial Value Problem
(1.5)-(1.6) in case c = —1

7. A specific case of the Initial Value Problem (1.3)-(1.4)

8.  Approximate solutions of the Boundary Value Problem
(1.9)-(1.10)

9. Applications

10. Approximate solutions of the Boundary Value Problem
(1.9)-(1.8)

11. An application

12. Discussion

References

2000 Mathematics Subject Classification. 34A45; 34A12, 34A25, 34B99.
Key words and phrases. One-parameter second order ordinary differential equa-
tion; growth index of a function; Approximate solutions; Initial value problems;
Boundary value problems;
March 21, 2010.

49

50
95
99

63
74

75
86

86
96

98
106
106
108



50 GEORGE L. KARAKOSTAS

1. INTRODUCTION

A one-parameter perturbation singular problem associated with a
second order ordinary differential equation is a problem whose the so-
lutions behave nonuniformly near the initial (or the boundary) values,
as the parameter approaches extreme levels. In this work we develop a
new method to obtain approximate solutions of some problems of this
kind. It is well known that under such a limiting process two situations
may occur:

i) The limiting position of the system exists, thus one can talk about
the continuous or discontinuous dependence of the solutions on the
parameter.

Consider, for instance, the following one-parameter scalar autonomous
Caushy problem

2"+ f(z,p) =0, z(0) = o, 2'(0) =B,

when the parameter p takes large values (and tends to +oo0). Un-
der the assumption that f satisfies some monotonicy conditions and it
approaches a certain function g as the parameter p tends to +oco, a geo-
metric argument is used in the literature (see, e.g., Elias and Gingold
[7]) to show, among others, that if the initial values lie in a suitable
domain on the plane, then the solution approximates (in the C*-sense)
the corresponding solution of the limiting equation. The same behavior
have the periods (in case of periodic solutions) and the escape times
(in case of non-periodic solutions). Donal O’ Regan in his informative
book [15], p. 14, presents a problem involving a second order differen-
tial equation, when the boundary conditions are of the form y(0) = a
(fixed) and y(1) = £, when n is large enough. It is shown that for a
delay equation of the form

i(t) + 2(t) = f(a(t - 1)),

when f satisfies some rather mild conditions, there exists a periodic
solution which is close to the square wave corresponding to the limiting
(as e — 01) difference equation:

z(t) = f(a(t —1)).

Similarly, as it is shown in Ch. 10 of the book of Ferdinand Verhulst
[22], the equation

' +z=cef(z, 2, e), (z,2') e DCR? (1.1)
(¢ > 0 and small) associated with the initial conditions

#(0) =ale), #(0)=0,
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under some conditions on f, has a periodic solution z(¢;£) satisfying

E1_141(1)14_ z(t;€) = a(0) cost.

Notice that the limiting value a(0) cost is the solution of (1.1) when
g=10.

ii) There exist some coefficients of the system which vanish, or tend
to infinity, as the parameter approaches a liming value. In this case we
can not formulate a limiting equation; however we have an asymptotic
approximate system for values of the parameter which are close to
the limiting value. The advantage of this situation is that in many
circumstances it is possible to have information on the solutions of the
limiting systems and, moreover, to compute (in closed form) the so-
called approximate solutions.

A simple prototype of this situation is, for instance, the differential
equation

d*u du
— +2— =0, =10
Edt2 + T +u , >,
subject to the initial values
du s
0)=a, —=b+—, 1.2
u(0)=a, Z=b+7 (12)

discussed in the literature and especially in the classic detailed book
due to Donald R. Smith [19], p. 134. Here the parameter € is small
enough and it approaches zero.

A more general situation, which we will discuss later in Section 5, is
an equation of the form

2" 4 [a1(t) + as(t)p"]2" + [b1(8) + b2(t)p*]z + agp™zsin(z) =0, ¢ >0
(1.3)
associated with the initial values

z(0;p) = 61 + dop”, 2'(0;p) = M +m2p". (1.4)

The entities u, v, m, o and 7 are real numbers and p is a large parameter.
The previous two problems have the general form

2"(t) + a(t; p)z'(t) + b(t; p)z(t) + f(t,2z(¢);p) =0, t >0, (1.5

where the parameter p is large enough, while the initial values are of
the form

z(0;p) = zo(p), 2'(0;p) = Zo(p)- (1.6)

It is well known that the Krylov-Bogoliubov method was developed

in the 1930’s to handle situations described by second order ordinary

differential equations of the form (1.5) motivated by problems in me-

chanics of the type generated by the Einstein equation for Mercury.
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This approach, which was applied to various problems presented in
[19], is based on the so called O’Malley [12], [13] and Hoppensteadt [§]
method. According to this method (in case f does not depend on z)
we seek an additive decomposition of the solution z of (1.5) in the form

z(t;p) ~ U(t;p) + U* (73 p),

where 7 := tp is the large variable and U, U* are suitable functions,
which are to be obtained in the form of asymptotic expansions, as

Ut;p) = Z Ue(t)p~*

k=0

and -
U*(tip) = ) Ur(t)p™™.

k=0

After the coefficients U, and U} are determined we define the remainder

Ry = Rn(t;p)
by the relation
z(t;p) = ) _[Uk(t) + Us(®)lp™ + Rn(t; p)
k=0

and then obtain suitable C' estimates of Ry (see, [19], p. 146). This
method is applied when the solutions admit initial values as in (1.2).
For the general O’Malley-Hoppensteadt construction an analogous ap-
proach is followed elsewhere, see [19], p. 117. In the book due to R.E.
O’ Malley [14] an extended exhibition of the subject is given. The
central point of the method is to obtain approximation of the solution,
when the system depends on a small parameter tending to zero, (or
equivalently, on a large parameter tending to +oo0). The small param-
eter € is used in some of these cases and the functions involved are
smooth enough to guarantee the existence and uniqueness of solutions.

In the literature one can find a great number of works dealing with
singular boundary value problems, performing a set of different meth-
ods. For instance, the work due to Kadalbajoo and Patidar [10] presents
a (good background and a very rich list of references on the subject, as
well as a) deep survey of numerical techniques used in many circum-
stances to solve singularly perturbed ordinary differential equations.
Also, in [21] a problem of the form

—eu'(8) + p(Ov' (1) + q()u(t) = f(z), ula) = a0, u(b) =,

is discussed, by using splines fitted with delta sequences as numeri-
cal strategies for the solution. See, also, [20]. A similar problem is
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discussed in [5], where the authors use a fourth-order finite-difference
method. In [11] a problem of the form

ey (t) + [p(w(@)] + a(z, y(2)) = r(z), yla) =, y(b) =5,
is investigated by reducing it into an equivalent first order initial value

problem and then by applying an appropriate non-linear one-step ex-
plicit scheme. In [17], where a problem of the form

ey’ (t) = f(z,9,2"), v(a)=ya y(d) =,

is discussed, a smooth locally-analytical method is suggested. Accord-
ing to this method first the author considers nonoverlapping intervals
and then linearize the ordinary differential equation around a fixed
point of each interval. The method applies by imposing some continu-
ity conditions of the solution at the two end points of each interval and
of its first-order derivative at the common end point of two adjacent
intervals.

A similar problem as above, but with boundary conditions of the
form

y'(0) —ay(0) = 4, /(1) +by(1) = B,
is presented in [1], where a constructive iteration procedure is provided
yielding an alternating sequence which gives pointwise upper and lower
bounds on the solution.

The so called method of small intervals is used in [23], where the same
problem as above is discussed but with impulses. In some other works,
ase.g. [4], [2] (see also the references therein) two-point boundary value
problems concerning third order differential equations are investigated,
when the conditions depend on the (small) parameter . The methods
used in these problems are mainly computational.

In this work our contribution to the subject is to give (assumptions
and) information on the existence and the form of a C'-approximate
solution Z(t;p) of the ordinary differential equation (1.5), when the
parameter p tends to +o0o, but by following a different approach: We
suggest a smooth transformation of the time through which the equa-
tion (1.5) looks like a perturbation of an equation of the same order and
with constant coefficients. The latter is used to get the approximate
solution of the original equation without using the Sturm transforma-
tion. Furthermore, these arguments permit us to provide information
on the estimates

z(t;p) — £(t;p)
and

%(f(t;p) - j(t;p)),
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as p tends to +oco, uniformly for ¢ in compact intervals. To handle the
"size” of the approximation we introduce and use a kind of measure of
boundedness of a function, which we term the growth indez.

Our approach differs from that one used (recently) in [3] for the
equation of the form

2" + (P’a1(t) + @)z =0, (L)

when p approaches +oco. In [3] the authors suggest a method to ap-
proximate the solutions of (1.7) satisfying the boundary conditions of
the form

z(0) = zo, (1) =mz(§). (1.8)
To do that they provide an approximation of the equation, and then
(they claim that) as the parameter p tends to ++oo, the solution of the
old equation approaches the solution of the new one. And this fact is
an implication of the following claim:
If a function 6(p), p > 0 satisfies §(p) = o(p~?), as p — +oo, then
the solution of the equation

v"(2;p) +v(2;p) = 6(p)v(z; ),
approaches the solution of the equation
v"(2;p) +v(zp) = 0.

However, as one can easily see, this is true only when v(z;p) = O(p"),
as p — +o0, uniformly for all z, for some r € (0,2). Therefore in order
to handle such cases more information on the solutions are needed.

This work is organized as follows:

In Section 2 we introduce the meaning of the growth index of a
function and some useful characteristic properties of it. The basic
assumptions of our problem and the auxiliary transformation of the
original equation (1.5) is presented in Section 3, while in Sections 4
and 6 we give results on the existence of C'-approximate solutions of
the initial value problem (1.3)-(1.6). In Section 4 we consider equation
(1.5) when the coefficient b(t;p) takes (only) positive values and in
Section 6 we discuss the case when b(¢; p) takes (only) negative values.
[lustrative examples are given in Sections 5 and 7. Section 8 of the
work is devoted to the approximate solutions of the boundary value
problem

z'(t) + a(t; p)7'(t) + b(t; p)z(¢) + f(t, z(t);p) =0, t€ (0,1), (L9)
associated with the boundary conditions of Dirichlet type

z(0;p) = zo(p), z(1;p) = z1(p), (1.10)
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where the boundary values depend on the parameter p, as well. Here
we use the (fixed point theorem of) Nonlinear Alternative to show the
existence of solutions and then we present the approximate solutions.
Some applications of these results are given in Section 9. In Section
10 we investigate the existence of C'-approximate solutions of equa-
tion (1.9) associated with the boundary conditions (1.8). Again, the
Nonlinear Alternative is used for the existence of solutions and then
C'-approximate solutions are given. An application of this result is
given in the last section 11.

2. THE GROWTH INDEX OF A FUNCTION

Before proceeding to the discussion of the main problem it is conve-
nient to present some auxiliary facts about the growth of a real valued
function f defined in a neighborhood of +oco. For such a function we
introduce an index, which, in a certain sense denotes the critical point
at which the function stays in a real estate as the parameter tends to
+00, relatively to a positive and unbounded function E(-). This mean-
ing, which we term the growth indez of f, will help us to calculate and
better understand the approximation results. More facts about the
growth index of functions will be published in a subsequent work.

All the (approximation) results of this work are considered with re-
spect to a basic positive function E(p), p > 0, as, e.g., E(p) := exp(p),
or in general E(p) := exp™(p), for all integers n. Here expl® (p) := p,
and exp(F)(p) := log®)(p), for all positive integers k. Actually, the
function E(p) denotes the level of convergence to +co of a function A
satisfying h(p) = O((E(p))*), as p — +oco. The latter stands for the
well known big-O symbol.

From now on we shall keep fixed such a function E(p). To this func-
tion corresponds the set

Ag = {h:[0,+00) : 3b € R : limsup(E(p))°|h(p)| < +00}.

p—too
Then, for any h € Ag we define the set
Ng(h) :={b € R : limsup(E(p))°|h(p)| < +o0}.

p—too

It is obvious that the set Mg(h) is a connected interval of the real line,
whenever it is nonvoint!. In this case a very characteristic property of

1For instance, for the function E(p) := p® and a function like A(p) :=e?, A >0
the set Ng(h) is empty.
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the function h € Ag is the quantity
Ge(h) :== sup Ng(h),

which we call the growth index of h with respect to E. To save space
in the sequel the expression with respect to E will not be used.

The simplest case for the growth index can be met in case of the
logarithm of the absolute value of an (entire complex valued function)
of finite order. Indeed, if F' is such a function, its order is defined as
the least of all reals « such that

|F(2)] < exp(]2]%),

for all complex numbers z. Now, the function f(p) := log|F(p + i0)|
satisfies

lim sup(E(p))°| £ (p)| < +o0
p—+oo

for all b < —q, with respect to the level E(p) := p. Thus we have
Gs(f) z —o

More generally, the growth index of a function A such that h(p) =
O(p*), as p — +oo, for some k € R, satisfies Gg(h) > —k. Also, we
observe that, if it holds

gE(h) > B,

then the function h satisfies
hp) = O([E@)]™), as p— +oo,
or equivalently,
|h(p)| < K(E(p))~",

for all p large enough and for some K > 0, not depending on p.
We present a list of characteristic properties of the growth index;
some of them will be useful in the sequel.

Proposition 2.1. If hy, hy are elements of the class Ag, then their

product hihy also is an element of the same space Ag and moreover it
holds

Gr(hih2) = Gg(h1) + Gg(ha).

Proof. Given hy, hy € Ag, take any by, by such that b; < Gg(hy), j =
1,2. Thus we have

lim sup(E(p))*|h1(p)| < +oo and limsup(E(p))*2|ha(p)| < +o0

p—+oo p—+co
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and therefore
lim sup(E(p))" % |h1 (p)he(p)| < limsup(E(p))™|hi(p)]

p—+00 p—+oo

x lim sup(E(p))*2|ha(p)| < +o0.
p—+oo

This shows, first, that h1hs € Ag and, second, that Gg(hih2) > b+ bs.
The latter implies that

Ge(hihe) > Gr(h1) + Gr(hs).
O

Lemma 2.2. Consider the functions hy, hg, -+, hy in Ag. Then, for
all real numbers a; > 0, the function 77, a;h; belongs to Ap and
moreover it satisfies

gE(iajhj) — min{Ga(h;) : §=1,2,-+- ,n} (2.1)

Proof. The fact that )77, a;h; is an element of Ag is obvious. To show
the equality in (2.1), we assume that the left side of (2.1) is smaller
than the right side. Then there is a real number N such that

QE(Zajhj) < N< mm{gE(hJ) rgp=1,2,:4- ,ﬂ,}.
j=1

Thus, on one hand we have

lim su a; YV |hj(
p—wl-oopz_: ] ) 1hi(p)]
. 22)
= limsup(E(p))" )| = 4
im sup(F (7)) (Z| 5(P)l) = +o0
and on the other hand it holds
limsup(E(p))™ |h;(p)| < +o0, 1=1,2,..,n
p—+o0
The latter implies that
hmsupZ:a,J )" |hi(p)] <Za3 limsup (E(p))"|k;(p)| < 400,

s j' 1 p—too

contrary to (2.2).
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If the right side of (2.1) is smaller than the left one, there is a real
number N such that

Jj=1

Thus, on one hand we have

T

limsup(E(p)” 3 a;1h;(p)] < +o0 (2.9)

p——+o0 j=1

and on the other hand it holds
limsup(B(p)) " (p)| = -+00,
p—+o0

for some jo € {1, 2,...,n}. The latter implies that

p—+co p—+0co

lim sup(E(p))"Y Z a;|h;(p)] > lim sup aj, (E(p)) " |hjy(p)| = +oo,

contrary to (2.3). O

The growth index of a function denotes the way of convergence to
zero at infinity of the function. Indeed, we have the following;:

Proposition 2.3. For a given function h : [rg, +00) — R it holds
Gp(h) = sup{r € R : limsup(E(p))"|h(p)| = 0}.

p—+oo

Proof. If b > Gg(h), then
lim sup(E(p))°|h(p)| = +oo.

p—-+oo
Thus, it is clearly enough to show that for any real b with b < Gg(h)
it holds

lim sup(E(p))°|R(p)| = 0.

p—+00
To this end consider real numbers b < b; < Gg(h). Then we have
lim sup(E(p))®* |h(p)| = K < +o0
p—-too

and therefore
lim sup(E(p))°|h(p)| = lim sup(E(p))®~*" lim sup(E(p))* |h(p)|

p—+oo p—+oo p—++00

= limsup(E(p))* K = 0.
p—s-+00
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In the sequel the choice of a variable ¢ uniformly in compact subsets

of a set U will be denoted by

t € Co(U).
Especially we make the following:
Notation 2.4. Let H(t;p) be a function defined fort € S C R and p
large enough. In the sequel in case we write

H(t;p) =0, as p — +o0, t € Co(S),

we shall mean that given any compact set I C S and any € > 0 there
is some po > 0 such that

|H(tp)| <e,
forallt € I and p = po.

Also, keeping in mind Proposition 2.3 we make the following:

Notation 2.5. Again, let h(t;p) be a function defined fort € S C R
and p large enough. Writing

Gr(h(t;p)) = b, t € Co(9),
we shall mean that, for any m < b, 1t holds
(E(p))™h(t;p) =0, as p— +oo, t € Co(S).

3. TRANSFORMING EQUATION (1.5)

In this section our purpose is to present a transformation of the one-
parameter family of differential equations of the form (1.5), to a second
order ordinary differential equation having constant coefficients.

Let Ty > 0 be fixed and define I := [0, Tp). Assume that the functions
a, b, f are satisfying the following:

Condition 3.1. For all large p the following statements are true:

(1) The function f(-,-;p) is continuous,

(2) a(-;p) € C*(I),

(8) There exists some 6 > 0 such that |b(t;p)| > 0, for all t and
all p large. Also assume that b(-;p) € C*(I) and sign[b(t;p)] =: ¢ =
constant, for allt € I.

The standard existence theory ensures that if Condition 3.1 holds,

then equation (1.5) admits at least one solution defined on a (nontriv-
ial) maximal interval of the form [0,T) C [0, Tp).
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To proceed, fix any ¢ € (0,T) and, for a moment, consider a strictly
increasing one parameter C?- mapping
v=o(p): [0,{] — [0,0(,p)]=:J
with v(0;p) = 0. Let ¢(-;p) be the inverse of v(-;p). These functions

will be defined later. If z(t;p), ¢t € [0,7] is a solution of (1.5), define
the transformation

Sp: @(5p) = Spa(ip): Graph(a(sp))( € OO, 8, R)) — O(JR),

where

z(t;p) _ x(¢(v;p);p)
Skl 0} = ylury) = = , vEJ 2.1
(Spalip))w) = yluie) Y(tp)  Y(é(v;p);p) 31)
Here Y'(-;p), which will be specified later, is a certain C*-function,
depending on the parameter p. We observe that

2'(t;0) = Y'(t;p)y(v;p) + Y (& p)v' (6 0)y (03 p), t € [0,1]

and
=" (tp = Y"(t;p)y(vi p) + 2Y"(t; p)0' (t; )y (v; )
+ Y ()0 (6 p)y (v;p)
+Y (& p)(W' (6 p))%" (vip), t € [0,].
Then, equation (1.5) is transformed into the equation
y'(vip) + A p)y' (vip) + B(tip)y(vip) + g(t;p) =0, ve J, (3.2)
where the one-parameter functions A, B and g are defined as follows:
_ Yt p)V' (60) + Y (5 p)0" (5 p) + alt; p)Y (8 0)v' (5 p)
Y (4 p) (v (t;p))? ’
B(t:p) = Y'(t;p) + a(t; p)Y'(;p) + b(t; )Y (t; p)
’ Y (t;p)(v'(£; p))? ’
f(& Y (& p)y(v;p); p)
t;ip) =
) = T G )2
We will specify the new functions v and Y. To get the specific form
of the function v(-; p) we set

v'(t;p) = v/cb(t;p), tel, e

c = signlb(t;p)], t e l.
In order to have v(t;p) > v(0;p) = 0, it is enough to get

ult; n) = fot cb(s;p)ds, t € [0,4]. (3.4)

Alt;p) :

where, recall that,



APPROXIMATE SOLUTIONS 61

Setting the coefficient A(¢;p) in (3.2) equal to zero, we obtain

2" (t; p)v' (£ p) + Y ()0 (1 0) + a(t; p)Y (¢ )V (£;p) = 0, t € [0, 1],
(3.5)
which, due to (3.3), implies that

Y'(t;p) + (i;((?;i)) - a(gp))m; p)=0, te0,d.  (3.6)

We solve this equation, by integration and obtain

i) = Yoy [ 150 oty

namely,

v(tip) = (A2 ep (— 1 / “asipds), te0d, @)

b(t; p) 2

where, without lost of generality, we have set Y (0;p) = 1.
From (3.6) it follows that

Y'(t;p)  V(p)  altip) (3.8)

Y(tp)  4b(tip) 2

from which we get

Y'(t;p) = - Y'(t;p) ( i;(é;f;)) + a(zp))

b(t; p)b" (t;p) — [V (t;p))* | a'(t;p)
1P p)? +=57)

Then, from relations (3.6), (3.8) and (3.9) we obtain
Y7(¢;p) + alt; p)Y'(t;p) + b(t; )Y (¢ )
b(tp)  alt;p)
¥ )(4&»( tip 2 )
(t; p)b" '(t;p)]* | a'(t;p) _
(t,pn? )

~Y(tp)(

=-Y'(¢t;

'—'H-\_/
3
—

I

— vt (L2

) @y~ 2

)
;) — (V(t;p))*  a'(t:p) +b(t-p)]
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Hence, the expression of the function B appeared in (3.2) takes the
form

oY bt a(t;p)\ (V(tp)  alt;p)
Blipk= [(45 2 )(4b(t;p) Tz )
(t p)b”(t p)—[b ( ip)]*  d(t;p) _
4[b(t; p))? 2 +b(t’p)]
') [altp))?
cbtp Klﬁb( t;p)] 4 )
_ b p)b (i p) — (&P d(tp) ,
e 5 )
5 '(tp)]? 1 [alt;p)?
16c( (t;p))°  4de b(t;p)
1 ¥(5p) _ oltp) 1
T de[b(tp)2 2eb(tp)
Therefore equation (3.2) becomes
y'(vip) + ey(v;p) = C(t, y(vip); p)y(v;p), v € J, (3.10)
where
oy B[t | laltp)?
COD) =" 6 bt T Bitin)
c V'(t;p) 4ol a'(t; p) _cf(t,Y(t;p)u)
AP | 2(tp) bER)Y (G
(Recall that ¢ = =+1, thus ¢ = 1.) The expression of the function

C(t,u; p) might assume a certain kind of singularity for u = 0, but, as
we shall see later, due to condition (3.13), such a case is impossible.
Therefore we have proved the if part of the following theorem:

Theorem 3.2. Consider the differential equation (1.5) and assume
that Condition 3.1 keeps in force. Then, a function y(v;p), v € J is a
solution of the differential equation (3.10), if and only if, the function

z(t;p) = (S, 'y(:0)) () = Y (& p)y(v(tip);p), t € (0,9

is a solution of (1.5). The quantities Y and v are functions defined in
(3.7) and (3.4) respectively.

Proof. It is enough to prove the only if part. From the expression of
z(t;p) we get

z'(t;p) = Y'(t; p)y(v(t; p); p) + Y (5 0)0' (8 0)y (v(t; p); p)
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and
o' (t;p) = Y (t; p)y(v(t; p); p) + 2Y" (; p)v' (t; 0)y' (v(t; ); )
+Y (& )" (& p)y (v(t; p);p) + Y (850) (V' (8 0)) " (v(t; p); p).

Then, by using (3.5), (3.2) and the expression of the quantity B(t;p),
we obtain

2"(t) + a(t; p)z’(t) + b(t; p)z(t) + f(¢, z(t); p)
= Y(t:0)( (50)° [y (v 9)i P) + B D)y (p)ip) + 9(6:7)| = 0.
U
To proceed we make the following condition:

Condition 3.3. For each j = 1,2, ..., 5, there is a nonnegative function
®; € Ag, such that, for allt € [0,T), z € R and large p, the inequalities

b (&) < @)t p) I,

, . (3.11)
6" (& p)| < Pa(p)|b(t; )7,

la(t;p)|* < @s(p)|b(t;p)],

1@(t5)] < () b(ti )], 12
|7 (t, 2;0)| < ®5(p)|2b(t; )| (3.13)

hold.
If Condition 3.8 is true, then we have the relation
v'(0;p) ;
0py | S VEDHOP), (3.14)

as well as the estimate

|C(t,u;p)| < %(Ih(p) + %(@2@) + ®3(p)) + %@4(19) + @5(p) (

= Py,
for all t € [0,7") and p large enough.

3.15)

4. ASYMPTOTIC APPROXIMATION OF THE INITIAL VALUE
PROBLEM (1.5)-(1.6) IN CASE ¢ = +1

The previous facts will now help us to provide useful information
on the asymptotic properties of the solutions of equation (1.5) having
initial values which depend on the large parameter p, and are of the
form (1.6).
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In this subsection we assume that ¢ = +1, thus the last requirement
in Condition 3.1 keeps in force with b(¢; p) > 0, for all t > 0 and p large
enough.

As we have shown above, given a solution z(t;p), ¢ € [0,7] of (1.5)
the function y(v;p), v € J defined in (3.1) solves equation (3.10) on
the interval J. (Recall that J is the interval [0,v(%;p)].) We shall find
the images of the initial values (1.6) under this transformation.

First we note that

y@m%i%m0=y(, = z(0;p) = zo(p). (4.1)
Also, from the fact that

z'(0;p) = Y'(0; p)y(0; p) + Y (0; p)v" (0; 2)¥/ (0; p)
and relation (3.6) we obtain

A I 1. b'(0;p) | a(0;p)
"0 ) =: — ; (4.2
y'(0;p) =t fo(p) o0 [a:o(p) + (4])(0;1}) e )330(}‘9)} (4.2)
Consider the solution w(v;p) of the homogeneous equation
w' +w=0 (4.3)

having the same initial values (4.1)-(4.2) as the function y(-;p). This
requirement implies that the function w(v;p) has the form

w(v;p) = c1(p) cosv + cy(p) sinwv, v € R,

for some real numbers c;(p), c2(p), which are uniquely determined by

the initial values of y(-;p), namely ¢1(p) = yo(p) and ca(p) = Ho(p).
Then the difference function

R(v;p) := y(v;p) — w(v; p), (4.4)
satisfies
R(0;p) = R'(0;p) =0,
and moreover
R'(v;p) + R(v;p) = C(t,y(v; p); p) R(v; D)
+ C(t y(v;p); p)w(v;p), ve

Since the general solution of (4.3) having zero initial values is the zero
function, applying the variation-of-constants formula in (4.5) we obtain

R@m)zﬁwﬂwﬁcwmw@mWM&m@+

(4.5)

. (4.6)
ﬁ/Kmﬁﬂmw@mm@m&
0
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where
K(v,8) =sin(v — s).
Observe that

ﬁﬁmmU—@wmmwsswﬂmwﬁ@@mv=v@w,veJ

and therefore

IR@sD) < PONG+PE) [ IR
0
Applying Gronwall’s inequality we obtain

|R(v;p)| < v(p)(eF®” —1). (4.7)

Differentiating R(v;p) (with respect to v) in (4.6) and using (4.7),
we see that the quantity | R'(v;p)| has the same upper bound as R(v; p)
namely, we obtain

max{|R(v;p)|,|R (v;p)|} < v()(e"P" = 1), veJ  (48)

By using the transformation S, and relation (4.8) we get the following
theorem:

Theorem 4.1. Consider the ordinary differential equation (1.5) asso-
ciated with the initial values (1.6), where assume that Ty = +oco0 and
Condition 3.1 holds with ¢ = +1. Assume also that there exist func-
tions ®;, j = 1,2, ..., 5, satisfying Condition 3.8. If x(t;p), t € [0,T) is
a mazimally defined solution of the problem (1.5)-(1.6), then it holds

T = +oo, (4.9)
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as well as
gg[iﬁ(i;p) ~ Y(t;p)w(v(t;p);p)]‘
< Y(t;p)’}/(p) (EP(p)v(t;p) _ 1) { (Dl(i)b(t;p) 4 la(;:p)' + b(t;p)],
(4.11)

for allt > 0 and p large enough. Here we have set
w(v;p) : = zo(p)cos(v)

b(lo;p) (i:ﬂ(}"?) + (z;((%:i)) 4 a(02; P))mo(p)) sin(v),

and P(p) is the quantity defined in (3.15).

Proof. Inequality (4.10) is easily implied from (4.8) and the relation

z(t;p) = Y (& p)y(v(t; p); p).

Then property (4.9) follows from (4.10) and the fact that the solution
is noncontinuable ( see, e.g., [16], p. 90).
To show (4.11) observe that

‘dt [Elt;n) — Y(t;p)w(v(t;p);p)])
d

Y 6P [y(v(E p);p) — w(v(t; p); p)]

and therefore

‘dt [2(t;p) — Y(t;p)w(v(t;p);p)}{

< |lu(o()5) — w(olt; i) Y (5:7)

- ’Y(t;p)%[y(v(t;p);p) - w(v(t;p);p)]‘l

< [R((: )P ¥ ()| + [Y (62) e R0t 2); ) (i)

< ¥ (t;)7(p) (7P — 1) | @1(4)5( Bl la(gp)l +Vb(Em)|.
We have used relations (3.8), (3.14) and (4.7). O

Now we present the main results concerning the existence of approx-
imate solutions of the initial value problem (1.5) - (1.6).
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The function defined by
#(t;p) : = Y (t; p)w(v(t;p)i p)

=Y (; p)[yo(p) cos [Ot v/ b(s; p)ds + Jo(p) sin /Ot v b(s;p)ds]
- (M)% exp ( — % /Ot a(s;p)ds) {xo(p) cos(v(t;p))

b(t; p)
- g 0+ (o + <))

(4.12)
is the so called approzimate solution of the problem, since, as we shall
see in the sequel, this function approaches the exact solution as the
parameter tends to +co. Moreover, since this function approaches the
solution z in the C! sense, namely in a sense given in the next theorem,
we shall refer to it as a C approzimate solution.

To make the notation short consider the error function

E(t;p) = z(t;p) — Z(t;p)- (4.13)
Then, from (4.10) and (4.11), we get
|£(t;p)| < M(t;p) (4.14)
and
2 £(t:0)| < Y (69 (0) (7O 1) |
; , (4.15
y [\/i’l(zz)b(t,p) " la(tQ,p)| . b(t;p)],
respectively.

Theorem 4.2. Consider the initial value problem (1.5) - (1.6), where
the conditions of Theorem 4.1 keep in force and the relation

I}lii{l Gu(®@;)> 0 (4.16)

is satisfied. Moreover, we assume that
zo, 71 € Ag, (4.17)
a(:;p) =0, for all large p, (4.18)

as well as
a(t;-), b(t;) € Ag, t € Co(RY). (4.19)
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If E(t; p) is the error function defined in (4.13) and the relation
5 3
min (%) + [igg(b(t; ) + min{Gx(Zo),
1
Gr(w0) + 595(b(t; ), (4.20)

Gi(wo) + Ga(alti )} | = No >0, ¢ € Cu(R),

is satisfied, then we have

E(t;p) 20, p— 400, t € Cy(RT) (4.21)
and the growth index of the error function satisfies
Go(E(t ) > No, t€ Co(R). (4.22)

In addition to the assumptions above for the functions xg,Zg,a,b
assume the condition

I}lii]{lgb“@j) + EQE(b(t; Y + min{Gg(Zo) + Ge(alt; ),

%QE(b(t; )+ Gr(Zo), Gr(xo) + QE(b(t; ‘):

: (4.23)
Gr(zo) + 2Ge(alt; ), ‘é‘gE(b(tQ ‘) + Ge(zo)
+ Grla(t; -)}] =N, >0, t € Co(RY),
instead of (4.20). Then we have
%S(t;p) ~0, p— +oo, t € Co(R"), (4'24)

and the growth index at infinity of the error function is such that
d
gE(%S(t; )) > Ny, t e C,(RY). (4.25)

Proof. Due to our assumptions given £ > 0 small enough, we can find
real numbers o, 7, and u, v, close to the quantities —Gg(zg), —Gr(Zo),
—Ggr(a(t;+)) and —Gg(b(t;-)) respectively, such that, as p — 400,
zo(p) = O(E(p))?), Zo(p) = O((E(p))"), (4.26)

a(t;p) = O((E(p))”), as p— +oo, t € C,(R™)
and

b(t;p) = O((E(p))*), as p — +o0, t € C,(RT), (4.28)
as well as the relation

S

5
min G (®;) - [T +meax{r,0+ 5,0+ v} = No—e> 0. (4.29)
J:
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for
Assume that (4.18) holds. We start with the proof of (4.21). Fix
any t > 0 and take any N € (0, Ny — €). Then, due to (4.16), we can
let ¢ > 0 such that
¢ 3p L
mlglngE(@j) >(>N+ [I + max{T, o + il - u}]
:,':

Therefore we have

3
max{?)z'u—l—'r %L-I—U f-{-a+u}—(<—N, (4.30)

and, due to Lemma 2.2, it holds
Ge(P) > ¢, Gs(®1) > ¢ (4.31)

The latter implies that there exist K > 0 and py > 1 such that
0 < P(p) < K(BG) ™, )
0 < ®1(p) < K(E(p)~,

for all p > pg.
From relations (4.27), (4.28) and (4.26) it follows that there are
positive real numbers Kj, j = 1,2, 3,4 such that

|b(t; p) < K1(E(p))*, (4.33)
1Zo(p)| < Ka(E(p)),

120(p)] < Ka(B(p))°, 24
0 <a(t;p) < Ko(E(p)), (4.35)

for all ¢t > 0 and p > p;, where p; > po.
Also keep in mind that from Condition 3.1 we have

b(t;p) = 0, (4.36)

In the sequel, for simplicity, we shall denote by ¢ the quan-
tity E(p).

Consider the function M(t; p) defined in (4.10). Then, due to (4.32),
(3.14) and (4.33)-(4.36), for all ¢ € [0,f] and p with ¢ = E(p) > p1, we
have

1 1 -
M(t;p) < Kf@’%q% [Ksz +672 (quT + K3q” [ (KIK)% =5

% K4q )](Z S KK 3 g i)

(4.37)
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Since the series

+0o0

1 n
n . —ng Bt
1+Z(n+1)|(tK) q (Kl)2q

n=1

converges uniformly for ¢ in compact sets, it admits an upper bound
K5(t) > 0, say, on [0, f]. Therefore, for all ¢ € [0,] and ¢ = E(p) > py,
it holds

o 1 = n g o~ o 1 op
Z}EKRQ "t (K1)Zqr < Ks(()iKq ¢ (Kq)2 g3,

n=1

So, from (4.30) and (4.37) we get
M) < Kf074g% x [(1+ 67D Fog

1 ]. 1 = i ].
+ K397§QJZ(K1K)§Q_§2+_ + ng_%QU‘Q‘KcLQ‘U]

x Ks(B)iKq$(K)bqh (4.38)

= Kgqlitm—¢+% +K7q§+a+i2iﬁ—c+f§ + Kggitotv—¢+4
< Keg ™V + Krg™V"8 + Kyg ™ < Koq™",
for some positive constants K;,j = 6,7,8,9. Recall that
g=E(p) 2p1 2po > 1

This and (4.14) complete the proof of (4.21).
Now, from the previous arguments it follows that given any A &€
(0, N) it holds

M(t;p)qA < Kog VM 50, as P — 400,

where the constant K is uniformly chosen for ¢ in the compact interval
[0,%]. Then from (4.14) we get
E(t;p)g* — 0, as p — +oo,

which implies that the growth index at infinity of the error function
satisfies

Ge(E(t;p) = A
From here we get
Gr(€(t;p)) = N.

Since N is arbitrary in the interval (0, Ny—e) and € is any small positive
number, we obtain (4.22).
We proceed to the proof of (4.24).
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Again, from our assumptions and (4.23), for any small enough € > 0,
we can choose real numbers o, 7, and p, v, as above, satisfying (4.33),
(4.34), (4.35), as well as

5 3
mll{lgg(@j) - [E —|—II18X{T + v,
j:
%+T,o+u,a+2v,%+o‘+u}]
=. Nl —e>0.

(4.39)
Take any N € (0,N; —€). Then, because of (4.39), we can choose
¢ > 0 such that

5 3
mi{lgE(@j) >( >N+ [I,u +max{7‘+u,%+r,cr+ﬂ,a+2u,
‘?=

g +a+ l’/’}] ;
From this relation it follows that
. 3
r;l_l{lQE(CDj) >N + [TM + maX{% + 104+ ,u,% + o+ u}]
3
=(B E) + [_,u + max{7, 0 + E,O"Jr?/}]
2 4 2
and
2 3p 2
min Gr(®;) >N + {E + max{7T + v, 0 + 2v, = +o0+ U}}

3
=(N+v)+ [wf—i—max{'r,a—l—u,a-l—%}].

These inequalities with a double use of (4.38), with N being replaced
with

N+ g and N+ v
respectively imply that

M(t;p) < Kog™™% and M(t;p) < Kog V7.
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Then, from (4.15), (4.32) and conditions (4.33), (4.35) it follows that
there are constants K;g, K11, K12 such that

%E(t;p)l SM(t;p)[ (I)l(i)b(t;p) + la’(gp)l + b(t;p)}

< M(&0)[Kia $¢% + Kng” + Kiagt]

< KoKoq Vg 3% + Ky Kog ™V p" (4.40)
+ KipKoqg N 5¢%

= Ki0Koq V% + K Kog™V + K1 Koq™

< (Ko + K + Ki2)g™v.

Since N is arbitrary, this relation completes the proof of (4.24).
- Relation (4.25) follows from (4.40), exactly in the same way as (4.22)
follows from (4.38). O

Theorem 4.3. Consider the initial value problem (1.5) - (1.6), where
the conditions of Theorem 4.1 and conditions (4.17), (4.18), (4.19)
keep in force. Moreover assume that there is a measurable function
w: [0, 4+00) — [0, +00) such that

la(t; p)| < w(t)log(E(p)), t=0 (4.41)

for p large enough. If E(t;p) is the error function defined in (4.13) and
the relation

T}lil{l A(®;) + EQEUJ@; ) + min{Gg(Zo), Gr(zo)
1 4.42
+ 508(6(5)), G z0)}] i
= Mg >0,
holds, then we have
E(t;p) =0, p— +oo, t€ Co([0,T(My))), (4.43)
where, for any M > 0 we have set
¢
T(M) i=eaup{t > 0:0() = / w(s)ds < 2M}. (4.44)
0

In this case the growth index of the error function satisfies

Ge(E(t;-)) = My, t e Co([0,T(My))). (4.45)
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Also, if (4.41) keeps in force and the condition
min A(2;) + [3G5(b(t ) + min{Ga(a0), 50 (b(t: )
+ o8, Goloo) + a0t ), Oalao),  (446)
LG5(3(13) + Gs(@n)} ] = M > 0

is satisfied, then we have
d

de(6p)~0, p— +oo, tECO(O.T(MY)  (447)

and the growth indez of the error function is such that
d
QE(EE(LL; ) > My, t € Co([0, T(M))). (4.48)

Proof. Let £ € (0,T(M,)) be fixed. Then from (4.42) we can choose,
numbers p, o, T satisfying (4.33) and (4.34) and such that —u, —o, —7
are close to Gg(b(t;+)), Ge(zo) andGg(Zo), respectively and moreover

S0 7 1 5
[I +max{r, o + 5,0}} + EQ@ < I“jﬂ:l{lgE(‘I’j)-

Take ¢, v, N (strictly) positive such that

3 [,
[I,u + max{r, 0 + %, o+ u}] + iﬂ(t) + N
; (4.49)
e
Let pg > 1 be chosen so that log(p) < p” and (4.41) holds, for all
p > po. Then, due to (4.41), we have
|a(0;p)| < w(0)¢”, (4.50)

for all p > po. Recall that g := E(p).
Now we proceed as in Theorem 4.2, where, due to (4.41) and (4.50),

relation (4.38) becomes

M(t;p) < K765k et®00s@

1 (e

) L1
% [(1 +673)Kaq” + Ko g1 (K1K)3q ™3

4 Kﬁ‘%”%w(())log(q)] X Ks(ﬂqu‘C(Kl)%q’% (4.51)

< Kﬁq%+r—c+-;—°+%9(f)

bpo+=GH—c+ 24200 &4+otv—(+4+30()
+ Kqq + Ksq : .
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Notice that (4.51) holds for all g := E(p) with p > pg > 1. From this
inequality and (4.49) we obtain the estimate

M(t;p) < (Ko + K7+ Ks)g ™", (4.52)

which implies the approximation (4.43). Inequality (4.45) follows as
the corresponding one in Theorem 4.2. Finally, as in Theorem 4.2, we
can use the above procedure and (4.52) in order to get a relation similar
to (4.40), from which (4.47) and (4.48) follow. O

5. APPLICATION TO THE INITIAL VALUE PROBLEM (1.3)-(1.4)

Consider the initial value problem (1.3)-(1.4), where assume the fol-
lowing conditions:

(i) The function b; € C*([0, +o0), [0, +00)) it is bounded and it has
bounded derivatives.

(ii) The functions ag,as € C([0,+00), [0, +00)) are bounded with
bounded derivatives.

(iii) The function by is a nonzero positive constant and, as we said
previously, the exponents p, v, m, o, 7 of the model are real numbers.

Observe that Condition 3.3 is satisfied by choosing the following
functions:

®l(p) = llp_sua (I)Q(p) = l2pﬁ2'u’, @3(}9) = l3p2y_M7

Dy(p) = lap”™*, D5(p) = lsp™*,
for some positive constants l;, j = 1,2,---,5. It is not hard to show
that the growth index of these functions with respect to the function
E(p) := p, are

gE(®l) = 3.“’7 gE(CI)2) = 21“‘) gE((I)3) =—2v+ Hy

Ge(®4) = —v+pu, Gg(Ps5)=—-m+p.
In this case the results (4.21) - (4.22) and (4.24) - (4.25) keep in force
with Ny and N; being defined as

)
/ol QU,E—m}—max{T,%+a,a+u}

N0Z=IIII1H{4,Z— )

and

. Wb
N, = mm{f, %—21/, %—m}—max{T-lnu, p+o, g_H_’ o+2v, %—f—d—!—l)},
respectively, provided that they are positive.
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To give a specific application let us assume that the functions as, as, b1
are constants. Then we can obtain the approximate solution of the ini-
tial value problem (1.3)-(1.4) by finding the error function.

Indeed, via (4.12), we can see that a Cl-approximate solution of
problem (1.3)-(1.4) is the function defined by

1
i@ap):=epr*§tUhr+cmp”ﬂ
x [(51 + 8,9°) cos[t(by + bap™)] + (by + bop*) 2

1 12
X (771 +mp" + 5(51 + 0207 ) (a1 + agp ))
xamﬂm+bw%ﬂ,tzu
This approximation is uniform for ¢ in compact intervals of the positive
real axis. For instance, for the values

a1 =2, as=08=0, h=b=by=m=m=1

9 1 9 (5.1)
TR mZ T__—Q—O—’J#_l’

we can find that the growth index at infinity of the error function
E(t;+)) satisfies

!l,:

19 d 1
s —El )= —.
Go(E(t;)) = 70 and (€6 2 35
In Figure 1 the approximate solution for the values p=>50, p = 150 and
p=250 are shown.

6. APPROXIMATE SOLUTIONS OF THE INITIAL VALUE PROBLEM
(1.5)-(1.6) IN CASE ¢ = —1

In this section we shall discuss the IVP (1.5)-(1.6) when ¢ = —1,
thus we assume that b(¢;p) < 0, for all ¢ and large p. We shall as-
sume throughout of this section that Condition 3.3 (given in the end
of Section 3) is satisfied.

Here the function y defined in (3.1) takes initial values yo(p) and
fo(p) as in (4.1) and (4.2). We wish to proceed as in Section 4 and
consider a fixed point £ > 0, as well as the solution

w(v;p) = c1(p)e” + ca(p)e™, v € [0,7]

of equation |
w’ —w =0, (6.1)
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F1GURE 1. Approximate solutions of the problem (1.3)-

(1.4), with the values (5.1) and when p = 50, p = 150
and p =250, respectively
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associated with the same initial values as y. We have set ¥ := 'U(f; p).
Thus, for j = 1,2 we obtain

1 (=1 7. v'(0;p) |, a(0;p)
ci(p) = 5 [:Ea(P) - —_m(ﬁo(i'?) + zo(p) [4b(0;p) + 5 1)]
and therefore it holds
1 1 _
lej(p)] < 5 [l%(?” + m‘%(?) )
+q ( )[b,({);p) i G(O;p)] H —_ h",( ) '
WP Lp0p) T 2 i

Also, the difference function R defined in (4.4) satisfies (4.6) where,
now, we have

K(v,s) = sinh(v — s).
Observe that

/Ov sinh(v — s)|w(s;p)|ds < lclép I/ — e ")e’ds
e

|CQ P
2

o —"u+s e %ds

|C1;p ve’ — sinh(v))

+ lf%gﬂ(sinh(’u) —ve™)
< k(p)v sinh(v)
and therefore, for any v € [0, 7], it holds

|R(v;p)| < P(o)s(p)vsinh(v) + P(o) f " sinh(v — 5)|R(5; p)|ds

< P(p)s(p)vsinh(v) + P(p) sinh(v) fov |R(s;p)|ds.

Here we apply the method of proving Gronwall’s inequality, but we
follow a different procedure. Indeed, we set

= / |R(s;p)|ds.
0
Then

F'(v) = |R(v;p)| < P(p)x(p)vsinh(v) + P(p) sinh(v) F(v)
and therefore
F'(v) — P(p) sinh(v) F(v) < P(p)x(p)vsinh(v).
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Multiply both sides with the factor exp (— P(p) COSh(’U)) and integrate

from 0to v. Then we obtain

F(v)e PP eoshlv) < P(p)m(p)f ssinh(s)e™F®)coshie) g
0

= Kl(p)(-—zve*P(P) cosh(v) | /'” o~ P(p)cosh(s) 7o

0
< .’i(p)?](]. _ e—P(’p)cosh('u)).

Therefore we have
|R(v; p)| < P(p)r(p)vsinh(v)
+ P(p)k(v)vsinh(v)(ef®)cosh®) _ 1)
— P(p)x(p)vsinh(v)el® cosh®),

Next we observe that

/v cosh(v — s)|w(s;p)|ds < |1 (p)

2
|ea(p)]
2

(ve” + sinh(v))

+ sinh(v) + ve™)
< k(p) (v cosh(v) + sinh(v))
and therefore, for any v € [0, 9], it holds

|E'(vip)| < P(p)s(p)(v cosh(v) + sinh(v))

+ P(p) /Dv cosh(v — s)|R(s;p)|ds
< P(p)x(p)(v cosh(v)

+ sinh(v)) + P(p) cosh(v) / \Bls:p)|ds.
0
Using this inequality and (6.3) we obtain
|/ (v;p)| < P(p)x(p)(vcosh(v) + sinh(v))
+ P(p)&(p)ef Py cosh(v)(eF P)cosh(®)=1) _ 1),

(6.3)

(6.4)

The proof of the next theorem follows as the proof of Theorem 4.1,
by using (6.3), (6.4) and the expression of the functions v and Y from

(3.4) and (3.7) respectively. So we omit it.

Theorem 6.1. Consider the ordinary differential equation(1.5) asso-
ciated with the initial values (1.6), where assume that the Condition
3.1 holds with ¢ = -1. Assume also that there exist functions ®;,
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i =1,2,..5, satisfying (3.11), (3.12), (3.13). Ifz(t;p), ¢t € [0,7)

is a mazimally defined solution of the problem (1.5)-(1.6), then it holds
T =400,

and if we set
2

w(v;p) : = % Z = (-1 [wo(p)
(=1} £ ¥(0;p) | a(0;p)

and
E(t;p) == z(t;p) = Y (t;p)w(v(t;p);p),
then we have

6t < P (o) exp (-5 [ alsinls)
X /Ot \/ —b(s; p)ds sinh {/Ot \/———b(s_;p_)ds] (6.5)
x exp (P(p) cosh(fﬂt V/=b(s;p)ds)) =

as well as

‘j«; ‘ “,p)[ (pilb(t p)l+| (tzp)l]

exp (—= /Ot (s;p)ds)/—b(t;p)
X P(p)ﬁ,(p)[(/ot —b(s;p)ds) COSh(/o v/—b(s; p)ds)
—|—sinh(/: v/ —b(s;p)ds)

¢ ¢
PP)/ \/—b(s;p)dscosh(f v/ —b(s;p)ds)
0 0
% (ef’(p)(cosh(f(;t \/—b(sip)ds)—1 1)]’
for allt € I and p. Here P is defined in (3.15) and & in (6.2).

(6.6)

Now we give the main results of this section.

Theorem 6.2. Consider the initial value problem (1.5) - (1.6), where
the conditions of Theorem 6.1 keep in force. Moreover assume that
a(-;p) > 0, for all large p, as well as the following properties:
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i) It holds sup,sq b(t;p) < 0, uniformly for all t in compact sets and
all large p.

it) It holds A\(®;) > 0, forall j =1,2,...,5.

i11) It holds zo,z1 € Ap.

Define the function

Z(t;p): = (%)% exp (—% /Dta(S;p)dS)

) b'(0;p)  a(0;p)
~ 7 ) + 2o gy + )]

Let x be a solution of the problem and we let £(t;p) be the error function
defined by
E(tp) == z(t;p) — Z(t p)-
a) If a(t;-) € Ag, t € Co(RY) holds and there is a measurable func-
tion z(t), t > 0 such that

b(t; )| < 2(t) [log(log(E(p)))]", (68)
for allt > 0 and p large enough, then we have
E(tip) 20, p— 400, t € Co(RY), (6.9)

provided that the quantities above satisfy the relation

5
I;’lzlllfi Gp(®;) + min{Ge(Zo), Ge(o), Ge(zo)
+Ge(a(t;-))} =: Lo > 0, t € Co(R™).
The growth index of the error function satisfies
Ge(E(t;+)) = Lo, t € Co(RY). (6.11)

b) Assume that (6.8) holds and z(t),t > 0 is a constant, z(t) = n,
say. If the condition

(6.10)

Iﬁl?gE(@j) — 1+ min{Gp(Zo), Gr(zo), Gr(zo)

+Ga(at;-), Gulalt;")) + Ga(Zo), (6.12)
Ge(zo) +2Gs(alt; ')} =: L1 > 0, t € Co(RT)

holds, then we have

d
Eé(t;p) ~0, p— +oo, t € Co(R"), (6.13)
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and

d

gE(Eg(t; ) = Ly, te Co(RY). (6.14)

Proof. We start with the proof of (6.9). Due to (6.10), given any small
e >0and N € (0,Ly — €) we take reals ( > 0 and 7,0, v near to

—Gr(%0), —Gr(20), —Gr(a(t;-)) respectively, such that

5
_i{lQ’E(q)j) > (> N +max{r, 0,0+ v}

J

Hence (4.34) and (4.35) keep in force. These arguments and Lemma, 2.2
imply that (4.32) hold, for some K > 0 and q := E(p) withp > po > 1.
Notice, also, that

max{r, o, o +v}—(<—N. (6.15)
Because of (6.15) we can obtain some 6 > 0 and p; > po such that

50 K
S+ 5a tmax{r, o+6 o +v}-(<-N, p2p. (6.16)

Keep in mind assumption (i) of the theorem, relations (4.34) and (4.35),
for some positive constants K, K3, K4 and, moreover,

b(t;p) < -0, (6.17)

for all t and p large. Fix any ¢ > 0 and define

t
A= / \ z(s)ds.
0
Obviously there is a py > p; such that for all ¢ > py, we have
Kqg*<1, g=p (6.18)
and
log(log(u)) < log(u) < ul, u > p,. (6.19)

Consider the function L£(¢;p) defined in (6.5). Then due to (4.32),
(3.14), (4.33), (4.34), (6.17), (6.8) and (6.19), for all ¢t € [0,f] and
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q > pa, we have

[N

L(t;p) < P(p)x(p) (#6?))%93 [1082(10%((1))]

x exp [P(p) coshlog(log(q))]]

< GoP)) (20) ¥

sinh[Gg log(log(q))]

Therefore it follows that

L) < My SrorTHRgT 4 Ao gttt

6.20
s A3q~§+au%+5+3—;+5+§9‘€ £ A4q7€+0+1’+§§+5+%‘1"§ ( )

bl

for some constants A;, 7 = 1,2,3,4. From (6.16) and (6.20) we obtain
L(t;p) < Aog™, t €0, (6.21)

for some Ag > 0. This and (6.5) complete the proof of (6.9).
Now, from the previous arguments it follows that given any L €
(0, N) it holds

L(t;p)g" < MgV =0, as p — +oo,

where, notice that, the constant Ag is uniformly chosen for ¢ in the
interval [0,%] and p with E(p) > p,. This gives

E(t;p)g” — 0, as p — 400, t € Co(RH).

Hence the growth index of the error function & satisfies Gg(E(¢;p)) > L
and so we get

Ge(E(t;p)) > N as p — +oo.

Since N is arbitrary in the interval (0, Ny — €) and ¢ is small, we get
(6.11).

(b) Fix any ¢ > 0 and take any small ¢ > 0 and N € (0, L, —¢). Also
from (6.12) we can get ¢ > 0, § > 0 and reals o,v, T as above, such
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that

max{% 41

+max{d+o+v, d+T,v+T, 20+0, 2+ o},

25+f\/ﬁ(5+1+max{fr,5—|—cr,a+v}} + N (5:29)
5
j:

Such a § may be chosen in such way that

tymé < 1.
By using inequality (6.6) and relation (3.8) we get

ié’(t;p){ < E(tip)

dt
; (%)%em( -3/ * a(5)ds) /FE )
<[ [ Vs cosn( [ /0
+ sinh( fo t /—b(s;p)ds)
P fo Y e LIRS, / W e

X (ea:p(P(p)(cosh(]ot v/ —b(s;p)ds) — 1)) — 1)},

@1(p)lb(t;p)| |, lalt;p)|
[ 4 " zp]

namely

|i5(t3p)| < L(t;p) [%Kép%\/ﬁl()g(log(q)) 4 K;Q”]

dt
+ (%)Z(log(log(Q)))%Kq‘C

1 1
| Kad® _( T
X 2[ 3q + \/ﬁ Kgq
K4py]

Logi o
+ Kag? | ;K347 /log(log(@) + =5
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x [£v/i(10g(10g(a))) cosh(E/log log(a)
-+ sinh(£,/71og(log(q)))
+ &"471/ilog(log(q)) cosh(fy/T log(log (1))
X (exp (Kq"g(cosh(f\/ﬁ log(log(q))) — 1)) - 1)] A2
Letting any p with ¢ := E(p) > po > e, and pp being such that
q > po == log(q) < ¢’
and using the fact that

e’,

[N R

z > 0 = cosh(z) < €® and sinh(z) <
from the previous estimate, we get
[ £t < [Aageror oot o pgterriieorte
t } =

4 AggCtos+o+ Yo+ 5a +A4g~g+a+y+%‘i+6+{§q“<:|

I Kig” :
x |3K30F i + =L ] + (1) b kg

2 9
1 1 1,1 = K4q¥
| Ksg® —(K LK ”[—K § uﬂ]
Xz{st]-i-x/ﬁ 9q + 3Q4ZQZ\/7_TQ+ 9
. . 1 . o .
x [E/ig DT + ghT 4 KTE, gl

o : g
x ((exp (Kq~((10g(@))™) ) | Agt.
Therefore it follows that

20
%S(t;p)l < JZ; Tjq", (6.23)
for some positive constants I';, 7 =1,2,---,20 and
Ty :=Cﬁg-+a+7—25+1, rz:=—C+0+5§6+1+%
T35=—C—g+7"+7—25+1, r4:=—C+T+52—5+1+Va
?"5:2—2C-|—J+%5-+1, r6=r7:=~C—%+U+Z§~+1+V,
TS;:_C+J+§+1+21/, Tg:=25—C+U+‘E\/55,

rio:=0—C+o+iyns, rT11:=20—(+0o+i/m+1,
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719 1= 25—(;+T+f\/ﬁ5, T13 ::6—C+T+f\/ﬁ5,
T14 \— 25—C+T+£\/ﬁ5+1} 5 = 3(5—C* C +U+£\/ﬁ(5,

2
T16:=26—C+J—%+f\/ﬁé, r17::35~C+a—%+f\/ﬁ5+1,

rg =20 — C+ o+ v+iymd, 719 = § — (4 0+ v+ E/74,

Tog 1= 25—C+O’+I/+f\/’ﬁ(5+1
Due to (6.22) all the previous constants are smaller than —N. Then,
for the quantity Ty := max; [';, inequality (6.23) gives

d _
| €Ep)| < Tog N q>po, (6.24)

which leads to (6.9), since the constant IV is arbitrary.
The proof of the claim (6.11) follows from (6.24) in the same way as
(4.22) follows from (4.38).
O

Theorem 6.3. Consider the initial value problem (1.5) - (1.6), where
the conditions of Theorem 6.1 and (i), (i), (i) of Theorem 6.2 keep
in force. Assume, also, that (4.41) and (6.8) hold.
a) If relation (6.12) is true, then
E(t;p) ~ 0, p— +o0, t € Co([0,T(Lg))).
Moreover the growth indez at infinity of the error function satisfies
Ge(E(t;-)) = Lo, t € Co([0,T(Lo)))-
b) If (6.12) keeps in force, then
d

ZE(6p) =0, p— +oo, t€ Co((0, T(Ln))

and

Gu(5E(t57)) 2 Ln, ¢ € Co(0,T(Ly)))

Proof. First of all we can see that for a fixed £ € (0,T(Lg)), due to
(4.41) and (4.44) we can find reals T, o, v near to —Gg(Z0), —Ge(z0), —Gelalt;-)),
respectively, such that

i :
exp ( - 5/ a(s;p)dS) < pi%,
0
Taking into account this fact and relation (6.10), we can see that

1 N 5
max{7,0,0 + v} + §Q(t) & mi¥ Or(2;).
J:
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Now, we proceed as in the proof of Theorem 6.2, where it is enough to
observe that the right hand side of relation (6.20) is multiplied by the
factor

exp(—%j; a(s; p)ds).

A similar procedure is followed for the proof of part (b) of the theorem.
O

7. A SPECIFIC CASE OF THE INITIAL VALUE PROBLEM (1.3)-(1.4)

We shall apply the results of theorem 6.2 to a specific case of the
problem (1.3) - (1.4), namely to the problem

2" + 2ap”z’ — a*p*™z + pmz sin(z) = 0, (7.1)
associated with the initial conditions
z(0;p) = ap”, '(0;p) =ap, (7.2)
where, for simplicity, we have set
1 1 1 2
a:=m, =2, w= 9’ T=O’I="2—, mgé-.

Using these quantities we can see that all assumptions of Theorem 6.2
hold, with E(p) = p,

19 T
Lo=—, L1 =-.
0 6 ) 1 6
Then an approximate solution of the problem is given by
1 £ .4 2t 1 24
B 1) = l—Oe“ﬁpgp% cosh(%) + (10p*% +p1_é) sinh(%), 12>

In Figure 2 the approximate solution for the values p=1, 3.45, 5.90,
8.38, 10.80, 13.25, 15.70, 18.15 is shown.

8. APPROXIMATE SOLUTIONS OF THE BOUNDARY VALUE
PrROBLEM (1.9)-(1.10)

In this section we consider Eq. (1.9) associated with the boundary
conditions (1.10). Our purpose is to use the results of section 3 in order
to approximate the solutions of the boundary value problem, when the
parameter p approaches the critical value +oco.
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i

i

P

1 ‘i |

:

13

FIGURE 2. Approximate solutions of (7.1) - (7.2), when
p=1, 3.45, 5.90, 8.38, 10.80, 13.25, 15.70, 18.15 respec-

tively

To begin with define 7 := v(1; p) and from now on the letter J, will
denote the interval [0,7]. Also, in order to unify our results, we make

the following convention:
We shall denote by

_)sin(v), if c=+1
Selv) = {sinh(v}, if c=-1,

Culw) = cos(v), z:f e=-+1
cos(v), if e=—1.
Our basic hypothesis which will be assumed in all the sequel without

any mention is the following:
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Condition 8.1. In case ¢ = +1 let
1

7 1= 9(1;p) :f Vb(s;p)ds <, (8.1)
Q

for all p large enough.

Suppose that the problem (1.9)-(1.10) admits a solution z(¢;p), ¢t €
[0,1]. Then, Theorem 3.2 implies, and inversely, that if y(;p) is a
solution of equation (3.10) having boundary conditions

y(0;p) = zo(p) = vo(p)

y(rip) = y(wip)ip) = 35 (8.2)

_ b(1;p)\1 1 S a(sip)ds _
=00 (55.5))
Before we seek for approximate solutions of the problem (1.9)-(1.10)

we shall give conditions for the existence of solutions. To do that we
need the following classical fixed point theorem:

Theorem 8.2. (Nonlinear alternative) [6]. Let D be a convex subset
of a Banach space X, let U be an open subset of D, and let A: U — D
be a completely continuous mapping. If ¢ € U is a fized element, then
either A has a fized point in U, or there is a point u € U and X € (0, 1),
such that w = AAu+ (1 — A)g.

To proceed we shall formulate the integral form of the problem and
then we shall apply Theorem 8.2. To this end we let w be the solution
of the homogeneous equation

w" +cw =0,

with boundary conditions w(0;p) = yo(p) and w(7;p) = y.(p). This
means that w is defined as
1
w(v;p) = m (yg(p)(sc('r e g yT(P)SC(U))- (8-3)
(Notice that because of (8.1) in case ¢ = +1 the factor S.(7) is positive
for all 7.) Hence we see that
lw(v;p)| < ge(lyol + [y7),

where

c=+1

sinh(r _
sinh(+/0)’ ¢c=+L

1
Qe = {m;n{ssn(\/a),sin(ry}=
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Next we let R(v;p), v € J be the solution of equation

R'(v;p) + cR(v;p) = H(v;p), v € Jp (8.4)
satisfying the boundary conditions
R(0;p) = R(7;p) = 0. (8.5)

where
H(v;p) : = C(t, y(v;p); )y (v; p)
= C(t,y(v; p); p)R(v; p) + C(t, y(v; p); p)w(v; p).
The latter, due to (3.15), implies that

|H (v;p)| < P(p)|R(v;p)| + P(0)ac(lyo(p)] + ly-(p)])- (8.6)

To formulate an integral form of the problem we follow an elementary
method and obtain

R(v;p) = d1C.(v) + daSc(v) + /v S.(v—s)H(s;p)ds, veJ, (8.7)

for some constants di, ds to be determined from the boundary values
(8.5). Thus we have
0= R(0;p) = dy

and
0= Rlrsn) = GiEs() + BB+ / " Su(r — s)H(s;p)ds.

This implies that

1

dy = —mfo S.(T — s)H(s;p)ds

and so we have
Hfug) = f G(v, 5;p)H(s; p)ds, (8.8)
0

where the one-parameter Green’s function G is defined by
S“(”S)ifg ) 8- xp(s)  (89)
Here the symbol x4 denotes the characteristic function of the set A.
From (8.9) we can see that
_ Se(8)8e(t—v)
G(U: 3;p) = {_Sc(vig‘(c?r—s),
Se(T) )
From 3.1 and (8.1) it follows that for all s,v € [0, 7] it holds

5}
max{|G(v, s;p)l, |5-G(v,5;9)[} < Qe (8.10)

Glu, s;p) =

DD ET
0<v<s<T
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where
+1

(sinh(7))? _
sinh(+v/8) ’ c=-L

Now we see that the operator form of the boundary value problem
(3.10)-(8.2) is the following:

y@mﬂ=w®ﬂﬂ+/]G@ﬁ@%ﬂﬂﬂ@ﬂ@Wﬁ@M&m%,UE%»
0

(8.11)

To show the existence of a solution of (8.11) we consider the space

C(Jp, R) of all continuous functions y : J, — R endowed with the sup-

norm || - ||-topology. This is a Banach space. Fix a p large enough and
define the operator A : C(Jp, R) — C(J,, R) by

(A2)(v) = w(v; ) /f?%&p B(50), 2(5); p)2(s)ds

which is completely continuous (due to Properties 3.1 and 3.3).
To proceed we assume for a moment that it holds

1= Plplrld, == Alp) = A 50, (8.12)
where (recall that) P(p) is defined in (3.15). Take any large p and let
T = v(1;p) =: v. Then, clearly,

lﬂp(p)TQc2A>0
Consider the open ball B(0,{) in the space C(J,, R), where
]
1—-P(p)r@

Here ||w|| is the sup-norm of w on J,.

Assume that the operator A does not have any fixed point in B(0,1).
Thus, due to Theorem 8.2 and by setting ¢ = 0, there exists a point 2
in the boundary of B(0,!) satisfying

z = Az,
for some A € (0,1). This means that for each v € J, it holds

Qc - {mm{sm(\f ),sin(r)}’ o=

L= £+ 1

V@NSHWW+LnG@JmmC@@m%4QWHdﬂH&
Then, from (8.10) we have

12(0)] < [lwll + QoP( f|z VIds.
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Thus, we get
|z(v)| < [lw]| + QP(p)7| 2, (8.13)
which leads to the contradiction
[|wl|
=z €« ——"— =1-1.
Il < TPt

Taking into account the relation between the solutions of the origi-
nal problem and the solution of the problem (1.9)-(1.10), as well the
previous arguments, we conclude the following result:

Theorem 8.3. If Properties 8.1, 8.8 and (8.12) are true, then the
boundary value problem (1.9)-(1.10) admits at least one solution.

Now, we give the main results of this section. First we define the
function

:E(t;p):=(z(—(;%)ﬂ)%exp(—%/; (spds mds
[ [ Vo)
+ z1(p) (gl—p))%e*f (emideg f \/b(s;p)ds) }

b(0; p)
_ 1 b(0;p)\ i
Sy b(S;p)dS){(b(t;ﬁ))

0

X exp ( — é/ota(s;p)ds)sc(/: oV b(SSP)ds)xo(P)
N (M)%e% i atmis g /D t ViE2)d)z: (0) )

b(t; )

which is going to be an approximate solution of the problem.

(8.14)

Theorem 8.4. Consider the boundary value problem (1.9) - (1.10),
where assume that Properties 3.1, 3.8, 8.1 , the conditions (1), (i) of
Theorem 4.2 and assumption (4.41) keep in force. Also, assume that
the boundary values have a behavior like

To, € Ap. (8.15)
a) If the condition
5 3
min Gr(®;) + ZQE(W; ) — @ + min{Gg(zo), Gr(z1)}
=:Ly>0

(8.16)
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is satisfied, then the existence of a solution x of the problem is guaran-
teed and if

E(t;p) = z(t;p) — Z(t;p) (8.17)
is the error function, where & is defined by (8.14), then we have
E(t;p) =0, p— +oo, t € Co([0,1]), (8.18)

where

1 1
b = —/ w(s)ds.
2 Jo

(Here w is given in assumption (4.41).)
Also, the growth index of the error function satisfies

Ge(E(t;)) = Lo, t € Co([0,1]). (8.19)
b) Assume that the condition

Ijnz{lgE(‘I)j) T %QE(b(t; ) — Q+ min{Gg(zo) + %Qg(b(t; )

Op(zo) + Ge(b(t;-)), G(21) + %gg(b(t; ). Gl (8.20)

Gr(z1)} = L1, te Co([0,1]) > 0,

holds. Then the existence of a solution x of the problem is quaranteed
and it satisfies

d
ES(LL; p) >0, p— +oo, t € Co([0,1]), (8.21)
and

Go(SE(t5)) = L, # € Co([0, 1) (522)

Proof. a) Take any N € (0, Ly) and, because of (8.16), we can choose
¢ > 0 and real numbers y, o, p near to —Gg(b(¢;-)), —Gr(zo), —Gr(z1),
respectively, such that

5
ji?A(@j) >(>2N+ % + 2 4+ max{o, o} (8.23)
Thus, we have
L+ Q+max{o,0} - < -N (8.24)
and, and due to Lemma 2.2,

P(p) < K(E(p))™%, (8.25)

for some K > 0. Thus (8.12) keeps in force for p large enough. This
makes Theorem 8.3 applicable and the existence of a solution is guar-
anteed.
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Let £(t; p) be the error function defined in (8.17). From (8.8), (8.10)
and (8.6) we have

|R(;p)| < 4.QPET ([0l + lyr]) + QeP( / |R(si p)lds,

and therefore
] QCQCP(p)T(lyol + lyTD
|R(U:P)| < 1 QCP(p)T (8.26)

1
< ZQ’chP(P)T”’UM + |y-]), v € Jp

Then observe that
E@t;p)| = |z(t;p) — Y (& p)w(v(t; p);p)|

= Y (t;p)|ly(v(t; p); p) — w(w(t;p);p)| = Y (& P)|IR(v(E p)s ),
because of (4.4). Thus, from (8.26) it follows that for all ¢ € [0,1] it
holds

|E(t; )| € ATHY (4 0)|2.Qc P ()7 (|30l + |y- )
_ Afl (b(o-}p))56_%f;a(s;p)dschcP(p)T(lyC]' + |y7|)

= A7 Qe [Ib(; )| P(p) (8.27)

«[Gaz)

+ (M) %e% I a(s;p)dslxl(p) |} ‘

b(t; p
From (8.25) and (8.27) for all large p (especially for all p with ¢ :=

E(p) > 1) it follows that
E(t;p)| < AT1Qer K™

Kfq * exp (log(q)% /Olw(s)ds) (Kgq" + que)

i
< Kug N (Kog” + Kag®).
Finally, from (8.24) we get
E(tp)| < KqV, (8.28)
for some K > 0, which, obviously, leads to (8.18). Relation (8.19)
follows from (8.28) as exactly relation (4.22) follows from (4.38).

b) Next consider the first order derivative of the error function £(t; p).
Due to (8.20), given any small € and N € (0, L1 —¢), we get reals { >

W[

~—

e 3 bme g (p)

N e

X
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0 and real u,v,0,0 > 0, near to —Gr(b(t;-)), —Gr(a(t;-)), —Ge(zo),
Gr(z1), respectively, such that

2 34 [
inGe(®;) >¢> N+ —+Q+max{oc+ +,0 + v,
=1 4 2 (8.29)

Q+%,Q+%M+Q,#+U}'

From (8.9) and (8.10) we observe that it holds

L Rp) = | [ GlspHsn

< QT (P()|R(v; )| + P(p)ac(|yol + |y-)
< ¢.Q7P®)AT'QemP(p) + 1)(lyo| + |y-l)-

From this relation it follows that

)

I%E(t;p)l = I%Y(t;p)R(v(t;p);p) + Y(t;p)&%R(’u(t;p);p)%v(t;pﬂ
< v (g pl{ (LH2ER) BB i ;) )

+ I%R(v(t;p);p)lvb(t;p)}

<ol ( qjl‘(i)b(t;p) + |a(t2;p)!)
x A q.Q.P(p)7(|yo] + |y-I)

+ Vbt )2 P(0)[A™Qer P(p) + 1(lyol + o)}
Therefore, for all large p (especially for p with ¢ := E(p) > 1) we obtain

d b(0: . .
|Eg(tap)i g QCQC'FP(p) [|$0(p)‘( (ij)) e_fg a(s;p)ds

1 b(t; p)
+an )| () ek o]
x{( (I’l(i)b(t;p)ﬂ“(tz;p)')al (8.30)

+/b(t; ) [AT' QT P(p) + 1]}
< q—C+Q+§f (Mlqcr+’,f, o M2qo+u
+ MagPTe + Myg”™ + Msq®™* + Msq®*),

for some positive constants My, My, M3, My, Ms, Mg not depending on
the parameter p. Taking into account the condition (8.29) we conclude
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that i
ZEED) < Mg,
for all large p. Now, the rest of the proof follows as previously. O

From inequalities (8.27) and (8.30) we can easily see that if the func-
tion a(-;p) is non-negative uniformly for all p and z:1(p) = 0, or a(;p)
is non-positive uniformly for all p and zo(p) = 0, then the conditions
of Theorem 8.4 can be weaken. Indeed, we have the following results,
whose the proofs follow the same lines as in Theorem 8.4:

Theorem 8.5. Consider the boundary value problem (1.9) - (1.10),
where assume that Properties 3.1, 8.8, 8.1 and the conditions (i), (i)
of Theorem 4.2 hold.

Also, assume that a(t;p) > 0 [respectively a(t;p) < 0,] for all t €
[0,1] and p large, as well as

1o € Ag and z1(p) =0, for all large p
[resp.
zo(p) =0, for all large p and z:1(p) € Ag].
a) If the condition
2 1
L Ge(®;) + ZgE(b(t; )+ Ge(zo) =: Lo > 0

[resp.
5 1
I;fl:lllfl gE(@j)ZgE(b(t; )+ Ge(z1) = Lo > 0]

is satisfied, then the existence of a solution x of the problem is guaran-
teed and if

E(t;p) = z(t;p) — Z(t;p)
is the error function, where & is defined by (8.14), then (8.18) holds.

Also, the growth index at infinity of the error function satisfies (8.19).
b) If the condition

1min \(;) + 705(b(t5)) + G (ao)
: (8.31)
- min{igg(b(t; V), Gela(t; )} =:L1 >0

[resp.
msin A®) + %gE(b(ti )) + Ge(z1)

+min{ZGp(b(t; ), On(alt; )} = La > 0
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holds, then the existence of a solution x of the problem is guaranteed
and it satisfies (8.21) and (8.22).

9. APPLICATIONS

1. Consider the equation

z" + sz(l) cos(t) log(p)z’ — [L + p" )z +p~'zsin(z) =0,  (9.1)
associated with boundary values
1 il 1
ey =—(1+=). 9.2
w(p) = 5P, 21(p) = g5(1+ ) (9.2)

Conditions (3.11), (3.12) and (3.13) are satisfied, if we get the functions

®;(p) = Ba(p) = Ps(p) = Palp) = kyp™ %
and
®s5(p) == kap~ 17,
for some ki,ke > 0. So case (a) of Theorem 8.4 is applicable with

E(p) := p. It is not hard to see that an approximate solution of the
problem is the function

sinh ((1 - t)\/m)
sinh (W
1 sinh (t\/rplo)

+e(p+§) Smh( 1+pm) ]

. _ sin()
E(t;p) =e”m [p

satisfying

= =

Ge(z(t ) — 2(5 ) =

The function for the values of p = 1,1.5,2,2.5 has a graph shown in
Figure 3.
2. Consider the equation
9 -
o+ —a + [% +p7 0z + “1;1(@ — 1, (9.3)

VP

associated with boundary values
20(p) = 0.2/, 21(p) =0, (9.4)
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FIGURE 3. Approximate solutions of (9.1) - (9.2), when
p=1, 1.5, 2, 2.5, respectively

We can take E(p) := p and
®1(p) = Ba(p) = B3(p) = Pu(p) = Ps(p) := kip™*°.

Then conditions (3.11), (3.12) and (3.13) are satisfied and so Theorem
8.4 is applicable with Ly = 3 and L; = 22.. In this case it is not hard to
see that an approximate solution of the problem is the function defined

on the interval [0, 1] by the type

1 1 .

The graph of this function for the values of p = 4,10, 20, 30 is shown

in Figure 4
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FIGURE 4. Approximate solutions of (9.3) - (9.4), when
p=4, 10, 20, 30 respectively

10. APPROXIMATE SOLUTIONS OF THE BOUNDARY VALUE
PrOBLEM (1.9)-(1.8)

In this section we shall discuss the approximate solutions of the prob-
lem (1.9) - (1.8). We shall use the results of section 3 to obtain ap-
proximate solutions when the parameter p tends to +o0o. Again, as in
section 8 we define 7 := v(1;p), Jp := [0,7] and use the symbols S,
and C,.

Our basic hypothesis which will be assumed in all the sequel without
any mention is that Properties 3.1 and 3.3 will keep in force for all
t€[0,1].

Assume that equation (1.9) admits a solution satisfying the condi-
tions

z(0;p) = 2o and z(1;p) = m(p)z(&; p),

for a certain point £ € [0,1) and a real number m(p). Then Theorem
3.2 implies that a function z(-;p) is a solution of the problem, if and
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only if y(-;p) is a solution of equation (3.10) and boundary conditions

y(0; p) = zo(p) =: Yo(P)

y(r;p) = y(v(1);p) = ;((11;;]3)) =m(p) }gi((ﬁ;;z)) (10.1)
= ) Py o(€ip)ip) = m oI P )

Before we seek for approximate solutions of the problem (1.9)-(1.8)
we shall impose conditions for the existence of solutions. To do that we
shall use, again, the Fixed Point Theorem 8.2. To proceed we assume

the following;:
Condition 10.1. i) There is some p > 0 such that

Sc(fo‘E % b(s;p)ds > p
Se(fy Vb(sip)ds

for all p large enough.
i) It happens
lim m(p) = +oo.

p—+00
iv) There is some @ > 0 such that
0 < af(t;p) < 23,
for allt € [0,1] and p large enough.
iii) There are 0,by > 0 such that
. 0 < b(t;p) < bo
for allt € (0,1) and p large enough.

Before we seek for approximate solutions of the problem (3.10)-
(10.1), we shall investigate the existence of solutions.
Let w solve the equation w” + cw = 0 and satisfies the conditions

w(0;p) = yo(p)
and
w(T;p) = m*(p)w(v(&;p);p).
Solving this problem we obtain
So(1 —v) — m*S(v(&;p) — v)
w(v;p) = :
S —msEm P
We shall show that the solution w is bounded. Indeed, from (10.2)
we observe that

(10.2)

SC(T) + m*Sc(T)
m*Se(v(&;p)) — Se(T)

lw(v;p)| < |yo(p)]
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and by using the bounds of all arguments involved we obtain

1
m(p) (%%%) To3 Jo alsipds 4 |

w(v;p)| < %o (p)|-
t ( )l m(p) (b(l;p)) ﬁ Sc(f(f +/b(s;p)ds) 5
(&) ) Se(fy +/b(sip)ds)
Hence, because of Condition 10.1, we obtain
m(p)v/boe® + (bof) i
lw(v;p)| < —[v0(P)| < polyo(p)], (10.3)
m(p)vOp — (bof)*
for all large p, where
o
Po = (\/_Se + 1).
Vop
As in previous sections, we set R := y — w. We shall search for

constants d; and ds such that the function
R(vip) i= diCelw) + daSe(0) + | Sulv = 5)H(sip)ds
0

be a solution of the nonhomogeneous equation
R'4+cR=H

satisfying the conditions

R(0;p) =0 and R(r;p) = y(7;p) — w(r;p) = m*R(v(&;p)). (10.4)
Here H is the function defined by

H(t;p) == C(t,y(v;p); p) R(v; p) + C(t, y(v; p); p)w(v; p),
which, due to (10.3), satisfies the inequality
|H (v;p)| < P(p)|R(v;p)| + P(p)polyo(p)]- (10.5)
Then we obtain that
d,1 T 0

and

1 v(&;p)
e S - m S E ) [/9 Se(v(;p)) = 5)H (s;p)ds

- /OT Se(T — s)H(s;p)ds].
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Therefore the solution R(v;p) takes the form

e Se(v)
Rlvip) = S(1) — m*(p)Sc(v(§;p

- [ sir = oHsp] + | " S.(v - 8)H(s;p)ds,

v(&p)
) [/0 S,(v(€;p)) — s)H(s;p)ds

namely
.
R(v;p)=/ G(v, s;p)H(s; p)ds,
0
where the Green’s function G is defined by

(5(0) [ Se(vg—s)—Selr—s)]
Se(T)=m*(p)Se(v(£ip))

+ S.(v — s),
0<s<v<w

& : = Se(v)Sc(T—s) -
(v,57) = | —seEmipsEe TS ~ )

OS’UE<8<’U

_ Se(v)Se(r—8)
SO OEACEL 0<v<v<s

To obtain upper C* bounds of the kernel G we distinguish the fol-
lowing cases:

0<s< (%3 <.

In this case for p large enough it holds
2(Se(7))?
m*(p)Se(v(§;p)) — Se(7)

1
25:( [y +/b(s; p)ds)
b(L;p) % % 1a(s)dssc(f§\/b(s;p)ds) .
m(p) (b{f;zﬁ)) et Se( f2 A/olsip)ds)

|G(v,5p)| < + Se(7)

IA

+SC(./0 /b(s;p)ds).

Thus due to Condition 10.1 there exists some p such that for all p > p
it holds

|G(v,s;p)| < [

+ 1] ky < 2k,

where
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Also, we can easily see that, for large enough p the first partial
derivative of G (with respect to v) satisfies

9 ‘ Se(7)Ce(T)
5609 < e =5
) CL e
N Lip 4 111 4(s)dsSe Jru v/ b(s;ip)ds
m(p)(gEE ;) fO e SC(Jro 1/b(s;p)ds)
C’c(/o V/b(s;p)ds) < ikll + 2k,

m(p)(3;)tp — 1

+ C.(7)

= 2|

0<v<s<w.
In this case for p large enough it holds

| (5.)° )
SCesiP) < rraten) = S * )

(Jo v/b(sip)ds)

b(1;p) % a(s SSC(fD VA sp)ds)
m(P)(b(&_;%) et fo oM Se( i v/blsmrds )

+ .S'C(fl \/b(s;p)ds) £ v 5 Dl

Similarly, we can obtain that for 0 < v; < s < v and p large enough,
it holds

IA

o)
|G(v; ;)| < 2k and ’%G(v,sgp)‘ < 4k,
while, for 0 < v < v < s, it holds

|G(v; s;p)| < k1 and ‘%G(’U, s;p)‘ = Ok

Therefore for all s,v we have

max{|G(v, s;p)|, '%G(v,s;p)‘} < 4k;. (10.6)
Applying the previous arguments we obtain that
1
4k1pobd
[R;p)] < =X Po)|zo(r)] (10.7)

Here A is defined as
1
A :=1—4k P(p)bZ =: A:(p) > 0, (10.8)
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where P(p) is defined in (3.15).
Hence the operator form of the boundary value problem (3.10)-(10.1)
is the following:

y(v; p) = w(v; p)

+/OT G(v,5;0)C(¢(s; ), y(s;0); P)y(s;p)ds, v € Jp. S

To show the existence of a solution of (10.9), as in Section 8, we
consider the Banach space C(Jp, R) of all continuous functions y : J, —
R endowed with the sup-norm || - ||-topology. Fix a p large enough and
define the operator A : C(J,,R) — C(Jp, R) by

@wmm=wmm+ﬁlmwmwwmewmp@@

which is completely continuous (due to Properties 3.1 and 3.3).
To proceed we assume for a moment that it holds

Take a large enough p and set 7 = v(1;p) =: v. Then we have v < bo
and so it holds

Consider the open ball B(0,1;) in the space C(J,R), where

As in Section 8, assume that the operator A does not have any fixed
point in B(0, ;). Thus, due to Theorem 8.2 and by setting ¢ = 0, there
exists a point z in the boundary of B(0,!;) satisfying

g NAE
for some A € (0,1). This means that for each v € J, it holds

V@HSHwW+AnG@ﬁmW0w&mL4ﬂmmdﬂW&

Then we have
uwNSHwn+4MP@)A|4@ws

and therefore
|2(v)| < [Jwl]| + 4k P(p)7]|2|l,

which leads to the contradiction
[|wl|

h=lell < TP 0L
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Taking into account the relation between the solutions of the original
problem and the solution of the problem (1.9)-(1.8), as well the previous
arguments, we conclude the following result:

Theorem 10.2. If Properties 3.1, 3.3 and (10.8) are true, then the
boundary value problem (1.9)-(1.8) admits at least one solution.

Now, we give the main results of this section. If w is the function
defined in (10.2) we define the function

E(t;p) : = Y(t;p)w(v(t; p); p)
¥ Se(1 —v) = m*S(v(&;p) — v)

=Y e sy PP (o
_ (b(0;p)\ Lty X(EGp)
- (b(t;p)) exp (- 5/0 o(ei2)%) 3o, py 0@

where

X(t;p): = Sc(/tl V/b(s;p)ds)

i) (D) ki [,

which, as we shall show, it is an approximate solution of the problem
under discussion.

Theorem 10.3. Consider the boundary value problem (1.9)-(1.8), where
assume that Properties 8.1, 3.3, 8.1, the conditions (10.8) and (1), (%)
of Theorem 4.2 keep in force. Also, assume that o € Ag.

a) If the condition

I;l_ﬁl? QE(CI)J) + gE(CEq) = L>0 (10.11)

15 satisfied, then the existence of a solution x of the problem is quaran-
teed and if

E(t;p) = z(t;p) — Z(t;p)
is the error function, where T is defined by (8.14), then we have

E(t;p) =0, p— 400, t€ Co([0,1]). (10.12)
Also, the growth index at infinity of the error function satisfies
Ge(€(t;)) = L, t € Co([0,1]). (10.13)
b) Moreover we have
d

Eﬁ(t;p) ~ 0, p— +oo0, t € Co([0,1]), (10.14)
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and
d

gE(E

Proof. a) Take a N € (0, L) and choose ¢ > 0 as well as —o < Gr(zo),
(thus we have

Et;-)) = L, te Co([0,1]). (10.15)

lzo(p)| < K3(E(p))”,
for some K3 > 0) such that
5

Imn M&;)>(=N+o. (10.16)
Therefore it follows that
c—(<—-N (10.17)
and
P(p) < K(E(p))™, (10.18)

for some K > 0. Thus (10.8) keeps in force for p large enough. This
makes Theorem 10.2 applicable and the existence of a solution is guar-

anteed.
Let £(t;p) be the error function defined in (8.17). From (10.7) it is
easy to obtain that

E(t;p)| < A1 (E(p))7¢.

for all large p, for some A; > 0. Obviously, this relation implies (10.12)
as well as (10.13).

b) Next consider the first order derivative of the error function £(t; p).
Again, as above, we obtain

RO(62)i9)] = |- / G(v, 52 H(s:p)ds vt p)

alt;p)
9

+ [ (6059l + ot G, i) (el ds]

Now, we use (10.16), (10.18), (10.17), (10.6), (10.5) and (10.7) to con-
clude that for some positive constants ks, k4 it holds

Z6EP) < ks P(p)lzo(p)] < ka(B(p))° ¢ < ka(E(p))7",

from which the result follows. O

dt
<Y (60 [3VEEROP) + 222
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11. AN APPLICATION

Consider the equation

g ) g e (11.1)
p
associated with the following boundary value conditions:
1
z(0;p) =p ™", x(1;p) = €’z(5;p). (11.2)

We can easily see that with respect to the unbounded function E(p) :=
p we have

QE(@J) == 1, j = 1,2,3,4,5 and gE(Io) =2
Therefore L = 2 and, so, Theorem 10.3 applies. This means that there
is a solution of the problem (11.1)-(11.2) and an approximate solution
of it is the following (according to (10.10)):
» sin(1 — t) — ePed sin(L — )
:E(t;p) = - T— f
sin(1) — ePed sin(3)

The graph of this function for the values of p = 3.83,6.33,8.83, 15.50
is shown in Figure 5

e_%'p_z, t €[0,1].

12. DISCUSSION

We have presented a method of computing the approximate solu-
tions of two initial value problems and two boundary value problems
concerning the second order ordinary differential equation (1.5). First
of all in section 2 we have given the meaning of measuring the approx-
imation, by introducing the growth index of a function. It is proved
that this meaning helps a lot to get information on how close to the
actual solution is the approximate solution as the parameter p tends
to +co. Section 3 of the work provided the first step of the method,
since therein we have shown the way of transforming by (3.1) the origi-
nal equation to an auxiliary and easy to elaborate differential equation
(3.10).

The sign of the response coefficient b(¢; p) plays an essential role. If
it is positive, we have an wave featured solution, while in case it is
negative we have exponential picture. This is the reason for discussing
the two cases separately especially in the initial value problems. The
first case is exhibited in Section 4, where in Theorem 4.1 we show first
the existence of a solution of the initial value problem and prepare
the ground for the existence of Cl-approximate solutions provided in
Theorems 4.2 and Theorem 4.3. The two theorems give, mainly, similar
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FIGURE 5. Approximate solutions of (11.1) - (11.2),
when p=3.83, 6.33, 8.83, 15.50, respectively.

results, but in the first theorem we assumed that the coefficient a(t; p)
is positive and in the second it is assumed that it may take negative
values as well.

An application of the results in an example where the two coefli-
cients a(t;p) and b(¢;p) are positive, is given in Section 5, where the
Cl-approximate solution is computed. The case of negative b(t;p) is
discussed in section 6 and the approximate results are applied to a
initial value problem in Section 7.

The boundary value problem (1.9)-(1.10) is discussed in Section 8.
First by the help of the (Fixed Point Theorem of) Nonlinear Alternative
we have guaranteed in Theorem 8.3 the existence of solutions of the
problem. Then, in Theorem 8.4 we gave estimates of the error function
E(t;p) == z(t; p) — (t; p), where Z(t; p) is the C'-approximate solution.
Here we are able to give simultaneously our results in the cases of
positive and negative b(t; p). A specific case when a(t; p) is nonnegative
and the solution vanishes in an edge of the existence interval is discussed
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separately in Theorem 8.5, while two applications of the results where
given in Section 9.

In Section 10 we investigated the boundary value problem (1.9)-(1.8).
Again, first in Theorem 10.2 we solved the existence problem by using
the Nonlinear Alternative and then we proceeded to the proof of the
existence of C''-approximate solutions in Theorem 10.3. An application
to specific equation is given in the last section 11.

Notice that all examples which we have presented are associated with
some pictures?, which show the change of the approximate solutions,
as the parameter p takes large values and tends to +oo.

As we have seen, in order to apply the method to a problem we have
to do two things: First to transform the original equation to a new one
and then to transform the initial values or the boundary values to the
new ones. Both of them are important in the process of the method.

And as the transformation of the original equation was already given
in (3.10), what one has to do is to proceed to the transformation of
the boundary values. For instance, in case the boundary values of the
original problem are of the form

z(0;p) = 2'(0;p), z(1;p) =2'(L;p),
then, it is not hard to show that, under the transformation S, the new
function y(-;p) is required to satisfy the boundary values

o 1 1y (0;p) 1 .
¥ (0;p) = T507) [ 150;p) +- Ea(U,p)]y(O,p)
and 1 1¥(Lip) 1
N P . )
Y (r:p) = b(—l,p) [1 3 Bl i Ea(l,p)]y(l,p).

Now one can proceed to the investigation of the existence of approxi-
mate solutions as well as to their computation.
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